Apo, Zn2+-bound and Mn2+-bound structures reveal ligand-binding properties of SitA from the pathogen Staphylococcus pseudintermedius
نویسندگان
چکیده
The Gram-positive bacterium Staphylococcus pseudintermedius is a leading cause of canine bacterial pyoderma, resulting in worldwide morbidity in dogs. S. pseudintermedius also causes life-threatening human infections. Furthermore, methicillin-resistant S. pseudintermedius is emerging, resembling the human health threat of methicillin-resistant Staphylococcus aureus. Therefore it is increasingly important to characterize targets for intervention strategies to counteract S. pseudintermedius infections. Here we used biophysical methods, mutagenesis, and X-ray crystallography, to define the ligand-binding properties and structure of SitA, an S. pseudintermedius surface lipoprotein. SitA was strongly and specifically stabilized by Mn2+ and Zn2+ ions. Crystal structures of SitA complexed with Mn2+ and Zn2+ revealed a canonical class III solute-binding protein with the metal cation bound in a cavity between N- and C-terminal lobes. Unexpectedly, one crystal contained both apo- and holo-forms of SitA, revealing a large side-chain reorientation of His64, and associated structural differences accompanying ligand binding. Such conformational changes may regulate fruitful engagement of the cognate ABC (ATP-binding cassette) transporter system (SitBC) required for metal uptake. These results provide the first detailed characterization and mechanistic insights for a potential therapeutic target of the major canine pathogen S. pseudintermedius, and also shed light on homologous structures in related staphylococcal pathogens afflicting humans.
منابع مشابه
Molecular Characterization of the Multiple Interactions of SpsD, a Surface Protein from Staphylococcus pseudintermedius, with Host Extracellular Matrix Proteins
Staphylococcus pseudintermedius, a commensal and pathogen of dogs and occasionally of humans, expresses surface proteins potentially involved in host colonization and pathogenesis. Here, we describe the cloning and characterization of SpsD, a surface protein of S. pseudintermedius reported as interacting with extracellular matrix proteins and corneocytes. A ligand screen and Western immunoblott...
متن کاملSynthesis of Zinc Dimethyldithiocarbamate by Reductive Disulfide Bond Cleavage of Tetramethylthiuram Disulfide in Presence of Zn2+
The zinc(II) complex [Zn2(dmdtc)2(μ-dmdtc)2] has been synthesized directly from thiram ligand, containing a disulfide bond {dmdtc = N,N-dimethyldithiocarbamate; thiram = N,N-tetramethylthiuram disulfide}, and characterized by elemental analysis and spectroscopic methods. Surprisingly thiram, undergoes a reductive disulfide bond scission upon reaction with Zn2+ in methanolic media to give the [Z...
متن کاملCharacteristics of the Binding of Ca 2 + and Other Divalent Metal Ions to Bovine a
Removal of the tightly bound Ca2+ ion from bovine a-lactalbumin (Hiraoka et al. (1980) Biochem. Biophys. Res. Commun. 95, 1098-1104) produces a pronounced conformational change, as indicated by fluorescence and absorbance changes. These changes closely resemble the changes that occur on acid denaturation of the native protein. The binding of ions to apo-a-lactalbumin at pH 7.4 has been examined...
متن کاملThe Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase.
The Treponema pallidum tro operon encodes an ABC transporter (TroABCD), a transcriptional repressor (TroR), and the essential glycolytic enzyme phosphoglycerate mutase (Gpm). The apparently discordant observations that the solute binding protein (TroA) binds Zn2+, whereas DNA binding by TroR in vitro is Mn2+-dependent, have generated uncertainty regarding the identities of the ligand(s) and co-...
متن کاملPocketome via comprehensive identification and classification of ligand binding envelopes.
We developed a new computational algorithm for the accurate identification of ligand binding envelopes rather than surface binding sites. We performed a large scale classification of the identified envelopes according to their shape and physicochemical properties. The predicting algorithm, called PocketFinder, uses a transformation of the Lennard-Jones potential calculated from a three-dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 34 شماره
صفحات -
تاریخ انتشار 2014